

MiniSKiiP[®] 1

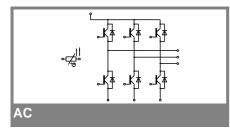
3-phase bridge inverter

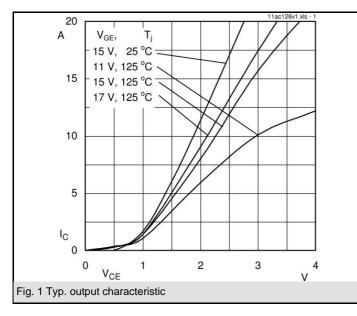
SKiiP 11AC126V1

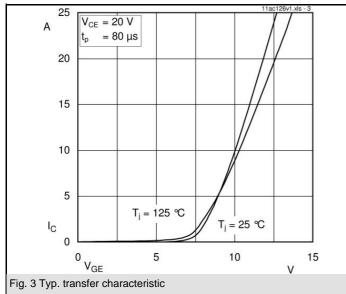
Features

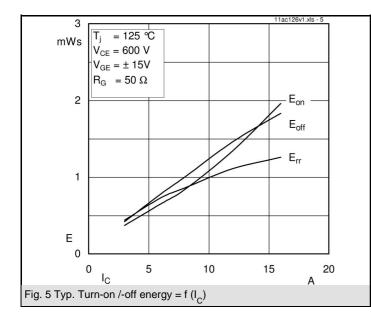
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

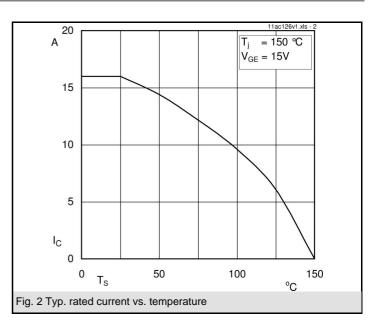
Typical Applications

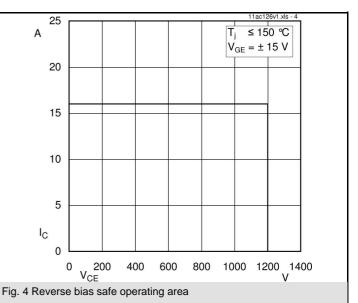

- Inverter up to 8 kVA
- Typical motor power 4 kW

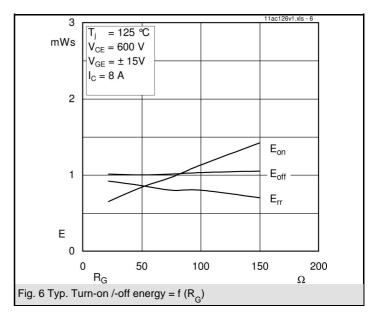

Remarks

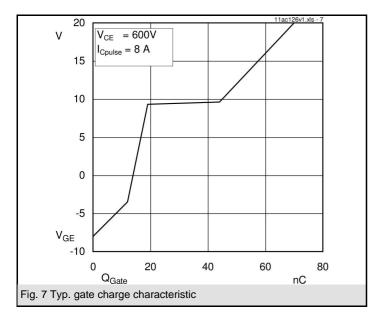

• V_{CEsat} , V_F = chip level value

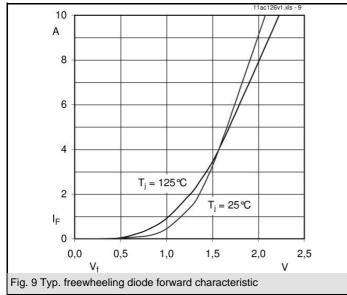

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise sp	= 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V _{CES}		1200	V					
I _C	T _s = 25 (70) °C	16 (15)	Α					
I _{CRM}	$t_p \le 1 \text{ ms}$	16	Α					
V _{GES}		± 20	V					
Т _ј		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	14 (11)	Α					
I _{FRM}	$t_p \le 1 \text{ ms}$	16	А					
Т _ј		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	40	Α					
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

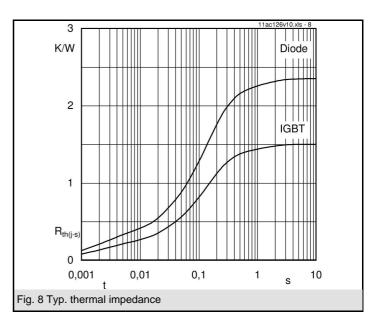

Characte	ristics	T _s = 25 °C,	T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _{Cnom} = 8 A, T _j = 25 (125) °C		1,7 (2)	2,1 (2,4)	V			
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0.3 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V			
r _T	T _j = 25 (125) °C		87 (138)	113 (162)	mΩ			
C _{ies}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		0,7		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$		0,1		nF			
C _{res}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		0,1		nF			
R _{th(j-s)}	per IGBT		1,5		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r `´	V_{CC} = 600 V, V_{GE} = ± 15 V		20		ns			
t _{d(off)}	I _{Cnom} = 8 A, T _j = 125 °C		390		ns			
t _f	$R_{Gon} = R_{Goff} = 50 \ \Omega$		105		ns			
Eon	inductive load		0,9		mJ			
E _{off}			1		mJ			
Diode - Ir	verter							
V _F = V _{EC}	I _{Fnom} = 8 A, T _j = 25 (125) °C		1,9 (2)	2,2 (2,4)	V			
V _(TO)	T _i = 25 (125) °C		1 (0,8)	1,1 (0,9)	V			
r _T	T _j = 25 (125) °C		112 (150)	138 (187)	mΩ			
R _{th(j-s)}	per diode		2,5		K/W			
I _{RRM}	under following conditions		15		Α			
Q _{rr}	I _{Fnom} = 8 A, V _R = 600 V		1,8		μC			
E _{rr}	V _{GE} = 0 V, T _i = 125 °C		0,9		mJ			
	di _F /dt = 750 A/µs							
Tempera	Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanic	cal Data	I						
m			35		g			
M _s	Mounting torque	2		2,5	Nm			
					1			

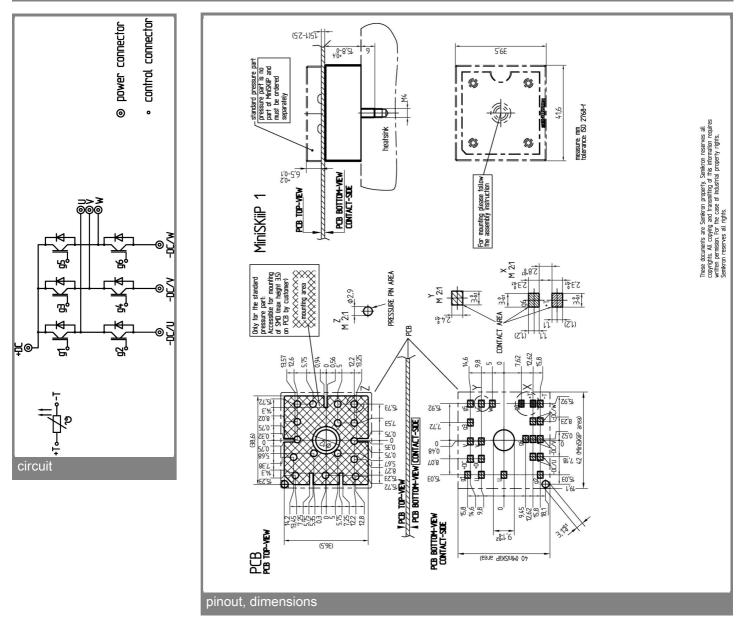












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.